The 21st Japanese Olympiad in Informatics (JOI 2021/2022)
Spring Training Camp/Qualifying Trial March 20-23, 2022 (Komaba, Tokyo)

Jail

In JOI Kingdom, the security of IOI Jail is strictly controlled. There are N rooms in IOI Jail, numbered from 1 to N. There are $N-1$ passages connecting rooms. The passage $i(1 \leq i \leq N-1)$ connects the room A_{i} and the room B_{i} bidirectionally. It is possible to move from any room to any other room by passing through several passages.

There are M prisoners in IOI Jail. Each prisoner has a "ID number", which is an integer between 1 and M, inclusive. The bedroom of the prisoner $j(1 \leq j \leq M)$ is the room S_{j}, and the workroom of the prisoner j is the room T_{j}. A prisoner may work in the bedroom of another prisoner. However, no two prisoners share the same bedroom, and no two prisoners share the same workroom.

One morning, the M prisoners have to move from their bed rooms to their work rooms. Mr. APIO is the director of IOI Jail. He will give the following directions to the prisoners to move.

Direction Choose a prisoner, and move the chosen prisoner from the current room to another room which is connected with the current room by a passage. In order to avoid communication between prisoners, it is not allowed to move the prisoner to a room where another prisoner stays.

In order to start work as early as possible, Mr. APIO wants to know whether it is possible to give directions so that every prisoner does not pass through the same room more than once (it means that every prisoner takes a shortest path).

Write a program which, given information of the rooms and the passages in IOI Jail and information on the prisoners, determines whether it is possible to move the prisoners so that every prisoner takes a shortest path.

The 21st Japanese Olympiad in Informatics (JOI 2021/2022)
Spring Training Camp/Qualifying Trial March 20-23, 2022 (Komaba, Tokyo)

Input

A test case consists of Q scenarios, numbered from 1 to Q. The following values are specified for each scenario. For the range of these values, see Constraints.

- The number of rooms N in IOI Jail.
- Information on the passages in IOI Jail $\left(A_{1}, B_{1}\right),\left(A_{2}, B_{2}\right), \cdots,\left(A_{N-1}, B_{N-1}\right)$.
- The number of prisoners M in IOI Jail.
- Information on the bedrooms and the workrooms of the prisoners $\left(S_{1}, T_{1}\right),\left(S_{2}, T_{2}\right), \cdots,\left(S_{M}, T_{M}\right)$.

The format of the input data is as follows. Given values are all integers.

```
Q
(Input for Scenario 1)
(Input for Scenario 2)
(Input for Scenario Q)
```

The format of the input data for each scenario is as follows. See Sample Input and Output for details.

$$
\begin{aligned}
& N \\
& A_{1} B_{1} \\
& A_{2} B_{2} \\
& \vdots \\
& A_{N-1} B_{N-1} \\
& M \\
& S_{1} T_{1} \\
& S_{2} T_{2} \\
& \vdots \\
& S_{M} T_{M}
\end{aligned}
$$

Output

Write Q lines to the standard output. The k-th line $(1 \leq k \leq Q)$ should contain the following.

- Yes if it is possible to move the prisoners for the scenario k.
- No if it is not possible to move the prisoners for the scenario k.

Constraints

- $1 \leq Q \leq 1000$.
- $2 \leq N \leq 120000$.
- $1 \leq A_{i}<B_{i} \leq N(1 \leq i \leq N-1)$.
- $2 \leq M \leq N$.
- $1 \leq S_{j} \leq N(1 \leq j \leq M)$.
- $1 \leq T_{j} \leq N(1 \leq j \leq M)$.
- $S_{1}, S_{2}, \cdots, S_{M}$ are different from each other.
- $T_{1}, T_{2}, \cdots, T_{M}$ are different from each other.
- $S_{j} \neq T_{j}(1 \leq j \leq M)$.
- It is possible to move from any room to any other room by passing through several passages.
- The sum of N for the Q scenarios is less than or equal to 120000 .

Subtasks

1. (5 points) $A_{i}=i, \quad B_{i}=i+1(1 \leq i \leq N-1)$.
2. (5 points) $Q \leq 20, \quad N \leq 250, \quad M=2$.
3. (16 points) $Q \leq 20, \quad N \leq 250, \quad M \leq 6$.
4. (28 points) $Q \leq 20, \quad N \leq 250, \quad M \leq 100$.
5. (12 points) $Q \leq 20, \quad M \leq 500$.
6. (11 points) It is possible to move from any room to any other room by passing through at most 20 passages.
7. (23 points) No additional constraints.

The 21st Japanese Olympiad in Informatics (JOI 2021/2022)
Spring Training Camp/Qualifying Trial March 20-23, 2022 (Komaba, Tokyo)

Sample Input and Output

Sample Input 1	Sample Output 1
1	Yes
8	
1	2
2	3
3	4
4	5
5	6
6	7
7	8
2	8
3	4
4	8

For this sample input, if the director gives the following directions, it is possible to move the prisoners so that every prisoner takes a shortest path.

1. Move the prisoner 2 from the room 4 to the room 5.
2. Move the prisoner 1 from the room 3 to the room 4.
3. Move the prisoner 2 from the room 5 to the room 6.
4. Move the prisoner 2 from the room 6 to the room 7 .
5. Move the prisoner 2 from the room 7 to the room 8 .

Therefore, output Yes. The structure of the jail for this sample input is as follows.
This sample input satisfies the constraints of all the subtasks.

The 21st Japanese Olympiad in Informatics (JOI 2021/2022)
Spring Training Camp/Qualifying Trial March 20-23, 2022 (Komaba, Tokyo)

Sample Input 2	Sample Output 2
2	Yes
7	No
1	2
2	3
3	4
4	5
3	6
6	7
2	
4	1
5	7
4	
1	2
1	3
1	4
3	3

There are $Q=2$ scenarios. For Scenario 1, if the director gives the following directions, it is possible to move the prisoners so that every prisoner takes a shortest path.

1. Move the prisoner 1 from the room 4 to the room 3.
2. Move the prisoner 1 from the room 3 to the room 2.
3. Move the prisoner 2 from the room 5 to the room 4.
4. Move the prisoner 2 from the room 4 to the room 3 .
5. Move the prisoner 2 from the room 3 to the room 6 .
6. Move the prisoner 1 from the room 2 to the room 1.
7. Move the prisoner 2 from the room 6 to the room 7 .

However, for Scenario 2, it is not possible to move the prisoners so that every prisoner takes a shortest path. Therefore, the first line of output should be Yes, and the second line of output should be No.

This sample input satisfies the constraints of Subtasks 3, 4, 5, 6, 7 .

The 21st Japanese Olympiad in Informatics (JOI 2021/2022)
Spring Training Camp/Qualifying Trial
March 20-23, 2022 (Komaba, Tokyo)

Sample Input 3	Sample Output 3
3	Yes
3	No
12	Yes
23	
2	
21	
32	
7	
12	
23	
34	
45	
56	
67	
3	
13	
42	
25	
8	
12	
23	
34	
45	
56	
67	
78	
4	
15	
26	
37	
48	

This sample input satisfies the constraints of Subtasks 1, 3, 4, 5, 6, 7 .

